Diesel, sulfur, NOx, and EGR

I’ve heard alot of people complaining about the exhaust gas recirculation (EGR) system on Ford’s 6.0L Power Stroke engine. One in particular comes to mind, from a “conversation” I had with FK000@aol.com over at thedieselstop.com: “Is it really necc. to cool the EGR with hot coolant… NO”. Actually, it’s common in the industry at this point. Just because the coolant is “hot” doesn’t mean that it can’t remove heat from exhaust gas that happens to be anywhere from 2 to 7 times hotter. It’s simple thermodynamics. That same individual went on to describe engineers as incompetent because sometimes things break, and closed the thread so no one could respond.

A little background will show the challenges that have been presented to the auto industry, with cooled EGR being one of the methods developed by automakers to meet increasingly stringent emissions standards. This appeared in Amsoil’s Action News and is a good summary of the saga of diesel emission regulations:

“Diesel engine emissions have been an ongoing environmental concern for the past few decades. Particulates and nitrogen oxides (NOx) associated with health problems and damaging smog and acid rain have been targeted by governments globally, and the United States, Europe and Japan have responded to demands to reduce these harmful emissions. NOx forms when atmospheric nitrogen in the powercylinder oxidizes. Because peak cylinder temperature plays a key role in NOx formation, methods of reducing the temperature, including cooled exhaust gas recirculation (EGR) technology, have been employed in modern diesel engines as solutions to reducing NOx emissions. Diesel particulates are composed of solid carbon (soot), sulfate, bound water and unburned fuel and oil. Because sulfur is key to particulate formation, the sulfur level in diesel fuel has been gradually decreased over the years.
In the U.S., particulate and NOx levels were first regulated in 1988, with regulations becoming increasingly stringent through the years. In fact, 1988 standards set NOx and particulate levels at 14.4 g/kW-hr (grams/kilowatts-hour) and 0.8 g/kW-hr respectively, while 2010 standards have been set at 0.27 g/kW-hr and 0.013 g/kW-hr respectively.
Between the years 1988 and 1991, emission standards were met by improving in-cylinder combustion through the use of unit injectors, electronic controls, controlled air swirl, improved combustion bowl design, reduced piston crevice volume, turbo-charging, air inter-cooling and reductions in oil consumption. The year 1991 also saw the use of high top rings to lower particulate emissions. Fuel sulfur was successfully reduced by 90 percent in order to meet 1994 particulate targets, dropping from 5,000 ppm to 500 ppm in October 1993. The sulfur reduction had no harmful effects on diesel engines, and the API CG-4 oil category was established in 1994 using low-sulfur diesel fuel in all engine tests. By 1998, retarded fuel injection timing was introduced to meet increasingly stringent NOx emission standards. By displacing combustion until later in the expansion stroke, retarded fuel injection timing lowers the peak fl ame temperature and effectively reduces NOx formation. High top rings and retarded fuel injection timing increased soot-loading on the oil, leading to the introduction of API diesel oil category CH-4 in order to prevent viscosity increases and increased wear due to soot. In order to meet 2002 emission standards, most engine manufacturers introduced low levels (10-15%) of cooled EGR technology. EGR engines reduce NOx emissions by recirculating a portion of the exhaust to the engine’s combustion chamber, lowering peak combustion temperature and NOx formation. Although EGR engines effectively reduce emissions, they also run hotter and introduce higher levels of soot and acid into the oil, leading to increased wear, increased oil viscosity and shorter oil drain intervals. The API CI-4 diesel oil specifi cation was introduced in December 2001 to protect against the higher temperatures and increased levels of acids, soot and oxidation associated with EGR engines. API CI-4 oils were formulated with increased detergent levels to protect rings and liners and increased oxidation inhibitors to prevent bearing corrosion. API issued an upgrade to its CI-4 specifi cation, CI-4 PLUS, in September 2004 in order to provide improved oxidation resistance, shear stability, acid neutralization and soot dispersancy for EGR engines. Some manufacturers released their own diesel oil performance specifi cations in order to assure optimum protection for their equipment. For example, Mack released its stringent EO-N Premium Plus High Performance Diesel Engine Oil specifi cation in the spring of 2002 and upgraded it in April 2003 to EO-N Premium Plus 03 and again in June 2006 to EO-O Premium Plus. The latest round of emission standards went into effect in 2007, requiring even more stringent NOx and particulate emissions reductions. While low levels of EGR technology (10-15%) were successfully applied in diesel engines to meet 2002 NOx emissions standards, most manufacturers incorporated increased EGR rates of 25-35% in order to meet 2007 standards. Increased EGR rates mean 2007 and newer diesel engines run hotter than their predecessors, requiring diesel oils meeting the latest API CJ-4 specifi cation to be formulated with improved oxidation resistance properties to prevent thermal runaway and maintain engine protection. Decreasing the level of sulfur in diesel fuel has been determined to be the most cost-effective way to decrease particulate emissions. The introduction of ultra low sulfur diesel (ULSD) fuel in June 2006 dropped diesel fuel sulfur levels from 500 ppm to 15 ppm in order to meet 2007 particulate limits, provide compatibility with NOx after-treatment systems and enable high EGR rates.
In addition, in order to further reduce particulate emissions, diesel particulate filters (DPF’s) were  incorporated into all 2007 and newer American diesel engines, and CJ-4 diesel oils are faced with the challenge of balancing engine protection with DPF life. Increased EGR, although effectively decreasing NOx emissions, results in less effi cient combustion and increased levels of soot, and some of it fi nds its way into the engine oil. Detergents within the oil are responsible for preventing soot from accumulating on internal engine components and increasing friction and wear, as well as preventing soot particles from agglomerating into larger particles that increase oil viscosity and clog oil filters.”

Isuzu’s truck products website simply states the benefits of cooled EGR:
“Cooled EGR Adds a cooling device to the EGR path, helping to lower the combustion temperature, further reducing the amount of NOx formation”.
Many studies and experiments on EGR and EGR cooling can be found by searching google.

The real problem with the EGR system on the 6.0L is actually the oil cooler. When the oil cooler clogs up (I’m still investigating why this happens, it’s due to an undetermined particulate in the coolant system) there is not a sufficient flow of coolant to the EGR cooler, and it consequentially overheats. This stresses the fins of the heat exchanger, and they crack allowing coolant to pass into the EGR stream.
Both upgraded EGR coolers and oil coolers are available at BulletProofDiesel which will retain proper emissions functionality while surviving at higher temperatures. I haven’t tested these products personally, but just by looking at it it’s a more robust design than stock. The oil cooler is impressive, it looks like their own design machined from aluminum bar stock, not a modification of the stock unit.

In summary, don’t blame automotive engineers for adding an “unnecessary” device. It was the actions of the EPA and environmentally conscious individuals that created government regulations for using things like EGR. The automotive industry does extensive testing on their products, and it is presumptuous and ignorant to insinuate they are incompetent. Engineering, manufacturing, and estimating the effects of  a customer’s actions on your product may be more difficult than you assume.

Tags: , , , ,

Sunday, August 23rd, 2009 Automotive

2 Comments to Diesel, sulfur, NOx, and EGR

  • Frank H says:

    Interesting reading, I have thoughts on EPA standards, it would be nice to know that in the long run emmissions would be lower out of newer diesel engine, I have my doubts. I own a 1993 7.3l diesel it gets 19-21 mpg, and has operated flawlessly for 300k. The emmisions could be calculated on this engine with out to much variable data.I have a 2003 6.0l diesel it gets 13-18mpg and does not operate flawless (right now I have a electronic problem,this is how google led me to your site) right now the timing changes to 12btdc and dumps a tonne of unburnt fuel this could amount to days months of emmissions out of my constant 1993 7.3L I dont know? There are many issues over the life of these engines that have to be included in the EPA emmissions that are not counted.More fuel = more diesel and delevery more refining more breakdowns and a shorter engine life meaning more manufacturing should have been added in the data but troubled engines likely were not included.
    We heat our house with wood approx. 12-13 facecord will kept the house quite warm. Old style airtight with damper in flue. We put a new EPA low emmission stove in, yes it visible burns better. But way less heat is transfered to the house and the rises out the flue . approx.19-20 face cord burnt and the house is just tollerable not warm. This extra wood needs to be added to EPA standard and the extra fuel to cut and the extra fuel to transport and extra live trees removed from the forest.
    I would hope EPA would consider all the varibles but I think not, and numbers can be twisted to look good just some of my thoughts for you to consider, hope you dont mind me stopping at your site.
    Frank

  • imsolidstate says:

    Thanks for your comment. I also agree that emissions ratings have little value. As for MPG on the 7.3 vs the 6.0, have you seen the actual fuel economy numbers for the twin-turbo 6.4? It’s even less than the 6.0. Not sure about Ford’s brand new engine. Fuel economy in diesel is actually moving backwards thanks to ever tighter emission standards.
    The one that I always think about is how much equivalent emissions it took to actually make any particular vehicle. People pat themselves on the back for trading in their “clunker” for a more fuel efficient car, but I have a hunch that the actual total emissions might be higher than sticking with one car for a while.
    That and I always get a kick out of people bragging about MPG on their new car, when they always drive like they are in a big hurry. So much for saving that fuel. That number on the window sticker feels good though.
    I grew up in a big old farmhouse that we heated exclusively with a wood stove in the winter. It was very efficient, largely because the pipe that carried the smoke outside had to go up all the way through both stories and the attic. There wasn’t too much heat left in the stack by the time it went outside. Most of it was radiated into the house by the pipe.

  • Leave a Reply